From Logic Programs to Iterated Function Systems
نویسندگان
چکیده
This thesis presents an approach which links logic programs and iterated function systems. The work was motivated by the discovery of self-similar structures during investigations of the TP-operator. This operator, associated with any program P , was previously embedded into the real numbers. Therefore, it could be plotted as a graph in R. It is shown that for a large class of logic programs there exists an iterated function system such that the attractor coincides with the graph. An algorithm is given that constructs such systems for logic programs. For certain logic programs the correctness is proven. Furthermore, it is shown that for all acyclic programs with injective level mappings the graph can be approximated arbitrarily well. In Section 6.1 possible applications of the theoretic results are presented. This includes an embedding into recurrent neural networks. Zusammenfassung In der vorliegenden Arbeit wird ein Ansatz dargestellt, der versucht, eine Verbindung zwischen logischen Programmen und Systemen iterierter Funktionen herzustellen. Motiviert wurde diese Arbeit durch die Entdeckung selbstähnlicher Strukturen während einer Untersuchung des TP -Operators. Dieser wurde zuvor in die reellen Zahlen eingebettet und konnte dadurch als Graph in R dargestellt werden. Es wird gezeigt, dass für eine sehr große Klasse von Programmen Systeme iterierter Funktionen existieren, so dass der Graph des TP -Operators mit dem Attraktor übereinstimmt. Es wird ein Algorithmus angegeben, der für bestimmte logische Programme entsprechende Systeme konstruiert. Von diesem Algorithmus wird die Korrektheit bewiesen. Weiterhin wird gezeigt, dass für alle azyklischen Programme mit injektiver Stufenabbildung der Graph des TP-Operators beliebig genau approximiert werden kann. In Kapitel 6.1 werden mögliche Anwendungen der gefundenen Resultate aufgezeigt. Diese schließen die Einbettung in rückgekoppelte neuronale Netze ein.
منابع مشابه
Logic programs, iterated function systems, and recurrent radial basis function networks
Graphs of the single-step operator for first-order logic programs — displayed in the real plane — exhibit self-similar structures known from topological dynamics, i.e. they appear to be fractals, or more precisely, attractors of iterated function systems. We show that this observation can be made mathematically precise. In particular, we give conditions which ensure that those graphs coincide w...
متن کاملRotation number and its properties for iterated function and non-autonomous systems
The main purpose of this paper is to introduce the rotation number for non-autonomous and iterated function systems. First, we define iterated function systems and the lift of these types of systems on the unit circle. In the following, we define the rotation number and investigate the conditions of existence and uniqueness of this number for our systems. Then, the notions rotational entropy an...
متن کاملChaotic property for non-autonomous iterated function system
In this paper, the new concept of non-autonomous iterated function system is introduced and also shown that non-autonomous iterated function system IFS(f_(1,∞)^0,f_(1,∞)^1) is topologically transitive for the metric space of X whenever the system has average shadowing property and its minimal points on X are dense. Moreover, such a system is topologically transitive, whenever, there is a point ...
متن کاملRecursive turtle programs and iterated affine transformations
We provide a formal proof of equivalence between the class of fractals created by Recursive Turtle Programs (RTP) and Iterated Affine Transformations (IAT). We begin by reviewing RTP ( a geometric interpretation of non-bracketed L-systems with a single production rule) and IAT (Iterated Function Systems restricted to affine transformations). Next, we provide a simple extension to RTP that gener...
متن کامل